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FOREWORD 

The   theoretical background  for the  study of hydro- 

elastic  problems,  recently Introduced  to the  designers  of 

naval   craft,   has been  taken mostly from the  analogous  field 

of  aeroelastlclty.    Two problems In hydrofoil design that 

have   received   some attention are  flutter (oscillatory diverg- 

ent  motion)   and divergence  (exponentially divergent motion). 

The   boundary  between  stable and unstable motion in each case 

is   the   critical  J'lutter-speed  or critical divergence-speed. 

This   volume discusses  only critical  flutter-speed. 

Tills   research  was  carried out under1  the Bureau of 

Ships   Fundamental Hydromechanics  Research Program,   S-R009-01-01, 

administered  by  the David Taylor Model Basin,   Office  of Naval 

Research Contract Nonr  ;""(/•;( -b,) . 

The   author'  wishes  to express  his  gratitude  to Pro- 

fessor  Holt Ashley of  the Department   of Aeronautics  and Astro- 

nautics  of the   Massachusetts  Institute  of Technology for his 

helpful   comments,   Professor Paul  Rltger of  the  Department  of 

Mathematics of   Stevens  Institute of Technology  for his  contri- 

bution   to this   report,   and Mr'.   Raihan  All,   Research Engineer 

at .Davidson Laboratory,   for  the  reduction of data used in 

tills   analysis. 
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I ABSTRACT 

The theoretical procedures commonly used by aero- 

elasticlans were applied to predict the flutter speed of a 

rigid hydrofoil that had two degrees of freedom. The results, 

compared with corresponding experimental measurements, Indi- 

cated a discrepancy between theoretical and experimental 

flutter speeds at low density ratios; the predicted asymptotic 

behavior of flutter speeds occurred, but at a lower density- 

ratio.  In addition, the accuracy of the circulation terms Is 

more doubtful than that of the added mass and linear terms In 

the theory. 

I xlll 
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INTRODUCTION 

Destructively large stresses or undesirable levels 

of vibration have been Induced In airfoils operating near the 

critical flutter-speed. Theoretical and experimental Investi- 

gations have shown that for certain elementary elastic con- 

figurations, flutter of foils In water Is unlikely (references 

1, 2,   3}   and k) .    Figure 1 shows the range of density ratios 

{applicable to these simple hydrofoil-configurations.  The 

magnitude of the dynamic pressure encountered by submerged 

control surfaces—rudders, stabilizing fins, hydrofoils, bow 

planes, etc.--is greater than that encountered by airfoils, 

except for those used on recent, high-speed aircraft. There- 

j fore, one is led to the following question: why have hydro- 

dynamic control surfaces not experienced flutter? 

In particular, bending-torsion flutter of canti- 

lever-supported hydrofoils has been investigated (reference 3)• 

In this Investigation, a critical density-ratio was predicted 

below which flutter was not possible. Isolated experiments 

using simple supports, confirmed these results. In these 

experiments, no flutter was obtained and none predicted. 

However, the low, overall damping associated with the 

unsteady hydrodynamic forces on the rudders of a destroyer, 

which recently experienced severe and sustained hull vibrations, 

has provided the Impetus for further investigations of hydro- 

dynamic flutter (reference 5). Cursory investigations of this 

vibration indicate that more realistic support conditions, and 

other conditions, may reduce the lowest value of density ratio 

at which hydrofoils will flutter. Therefore, the reliability 

of theoretical predictions of flutter speed at low values of 

density ratio must be determined. 



In previous hydroelastlc work. It was assumed that 

aerodynamic theories would apply directly to the hydrodynamlc 

problem. Assuming this to be true, these theories should cor- 

rectly predict the flutter speed of a hydrofoil. This Investi- 

gation was conducted to experimentally verify the accuracy of 

aeronautical theories when used to predict flutter speed 

(throughout the range of parametric values of Interest In 

hydrofoil design) . 

Some previous work along these lines has been per- 

formed. The NACA Investigated flutter of light, cantilever- 

supported wings In an alratream made heavy by the use of Preon 

and air mixtures ( reference Jl) . The experimental points In 

Figure 1 are representative of the results obtained by NACA. 

The range of density ratio In this Investigation did not ex- 

tend Into that .('or a cantilever-supported hydrofoil.  However, 

the range of density ratio In which flutter was obtained ex- 

perimentally extends, by a small amount below the critical 

density-ratio, Into the range in which flutter is theoretical- 

ly impossible.  It is this discrepancy which was investigated. 

In view of,the inconclusiveness of previous experi- 

mental and theoretical results, a single set of experiments 

was conducted over a range of density ratio extending from 

region 1 through regions 2 and 3 and well into region k 

(Figure l) . 

In these experiments, speed and density ratio were 

varied; all other parameters were constant. Another series 

of experiments is bein;1; conducted at several additional 

values of center-of-gravity location and radius of gyration 

to investigate further the discrepancy between theory and 

experiment. 
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II.  TEST SETUP 

A.  MODEL AND SUPPORTS 

The experimental setup was designed so that flutter 

would be obtained under controlled conditions that closely 

duplicated the theoretical assumptions; the setup did not typi- 

fy any hydrofoil application (Figures 2 through 6). The ex- 

periments were performed in the High-Speed Facility. 

The model had a chord length (c) of 6 Inches and a 

span of 12 Inches. The profile was a thin symmetrical shape, 

(NACA 0012). The offsets for the model were obtained from 

reference 6. The material used for the model was a plastic 

whose properties are summarized in Table I. 

1.  End Plates : 

End plates were used to provide two-dimensional flow 

and were attached to the carriage by struts and aluminum box- 

beams.  The chord plane of the model was arranged vertically 

and the end plates were above and below the model, each with a 

maximum clearance of 0.006c. The end plates were 11.29c long 

by 6.71c wide. The rotational axis of the model was located 

in the middle and 4,31c aft of the leading edge of the end 

plates. The end plates were made of l/8-inch aluminum plates 

stiffened in both the transverse and longitudinal direction. 

The transverse stiffening members were covered with aluminum 

sheets, which provided fairing to reduce drag. 

2.  Sting Support 

The model was supported by a vertical sting that 

passed through the upper end-plate and the water surface to a 

flexure balance that was entirely above water. The sting was 

a stainless-steel tube (l-lnch 0D, 0.87-inch ID, BWG No. l6) 
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protected from the stream velocity In the region between the 

upper end-plate and the water surface by a faired shield. 

To reduce the effect of the hole In the upper end- 

plate,, a small, circular plate made of l/l6-lnch stainless 

steel was attached to the lower end of the sting. The radius 

of this auxiliary end-plate overlapped the hole In the upper 

end-plate when the sting was displaced to either side. The 

auxiliary end-plate was below the main end-plate and had a 

maximum clearance of 0.006c. 

3.  Balance 

The sting was attached to the fixed support through 

a flexure balance (Figures 5^ 6, and 7) . Two modes of motion 

for the model In the horizontal plane were permitted by this 

balance; rotation about a vertical,spanwlse axis and horizontal 

translation normal to the direction of motion. Mechanical 

stops limited these motions to ij/'l-inch of translation and 

-2  degrees of rotation. The axis of the sting was in line 

with the quarter-chord axis of the model and was located at 

the apex of a pair of V-fnames (Figure 7) . These frames, 

located in parallel horizontal planes one above the other, 

provided a linear elastic restoring moment in the desired 

rotational degree of freedom and were effectively rigid in all 

other degrees of freedom. These frames were I-beams with 

lightening holes in the webs and were necked down at both ends 

as shown in Figure 7. Most of the flexibility of these beams 

was concentrated in the necked-down sections (flexures); the 

dimensions of the flexures were chosen to give the desired 

rotational stiffness. The base of the V-frames was connected 

to the fixed support through four parallel bars^ which allowed 

the whole unit to translate in the desired direction.  In a 

manner similar to the members of the V-frameSj the ends of the 

parallel bars were necked down to provide the desired trans- 

lation flexibility (Figure 7). The translation bars were 

aluminum channels and the rotation beams were machined alumi- 

num stock. 
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A spring-loaded, locking mechanism was Installed 

that held the model In the desired initial position until It 

was released by a solenoid controlled by a switch at the 

operators station. 

The flexure balance was anchored to the carriage by 

a supporting structure. To provide greater rigidity against 

rotation of the apparatus In the vertical transverse plane, 

an outrigger was attached to an auxiliary wheel that ran 

along the side of the tank. 

The apparatus.satisfied all requirements for the 

support of the model. The rotation spring stiffness came with- 

in 8$ of the desired value and the translation spring stiffness 

came within yfo.    These errors arose mainly from the estimate 

of the effect of fillets at both ends of the flexures. A flex- 

ure length equal to the actual flexure length, including both 

fillets, minus one fillet radius, gave values for predicted 

stiffnesses within 2%  of the measured values. The rigidity of 

support against undesired motions was found to be well within 

reasonable limits. The frequency of vertical translatory 

oscillations of the model in air was found to be three times 

greater than the highest frequency encountered during the 

tests in water. All other observed i'requencies of extraneous 

motions were five or more times the highest test frequency. 

B.  INSTRUMENTATION 

The motions of the model were measured by recording 

the unbalance of strain-gage bridges.  Strain gages were mount- 

ed on the flexure balance and the signal outputs from the 

strain-gage bridges were recorded. To measure the speed of 

the apparatus, an electronic counter was used to determine the 

time required for the apparatus to pass between two locations 

a known distance apart. In addition, a tachometer generator, 

attached to the carriage, was activated by a wheel running on 

the carriage rail to measure the instantaneous speed of the 



apparatus. The average speeds obtained by these two methods 

were in agreement and no appreciable speed fluctuations dur- 

ing the runs were observed. 

In general, slide rule accuracy was maintained 

throughout the experimental analysis.  Scatter In the data 

Is a result of actual extraneous effects In the experiments 

and Is not caused by Inaccuracies In the Instrumentation. 

The parametric values obtained In the experiments 

are shown In Table II.  In view of the large amount of weight 

added externally and rigidly to the foil, the results of the 

experiments described here should not be viewed as represen- 

tative of any hydrofoil application.  In practice, density 

ratios greater than 1.0 are seldom encountered. If ever. 

The experimental flutter speeds and frequencies are 

given In Table II and the results are plotted in Figures 10 

through 2J1.  The corresponding theoretical results are pre- 

sented along with these results. 

0.  WEIGHTS 

Two sets of weights were connected rigidly to the 

sting to obtain the selected center-of-gravlty (e.g.) loca- 

tion (x b), radius-of-gyratlon (r b), uncoupled natural fre- 

quency ratio (u) /cü ), and to vary the density ratio (ju ) while 

maintaining all other parameters as constants (Table II). 

The uncoupled natural frequency in each mode of 

vibration can be defined as follows: 

< = Kh/m and < = \K "(^ 
where K, = support stiffness in translation per unit span 

Ka = support stiffness in rotation per unit span 

m = total oscillating mass per unit span 

I = mass polar moment of inertia of rotating parts 
about the rotational axis, per unit span. 
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The dlmenslonless radius of gyration can be defined 

as follows: 

vl  = Ia/mb
2 (2) 

where b Is the half-chord length of the model. When equa- 

tions 1 and 2 are combined^ the uncoupled natural frequency 

ratio Is 

Thus, the stiffness ratio (K./K ) is determined by the values 
of Vv V and b- 

Let the subscript b denote the characteristics of 

the apparatus without weights and the subscript a denote the 

characteristics of the apparatus with the first set of weights. 

Let the subscript n = 0, 1, 2,   ... denote the desired values 

of the properties numbered successively, starting with the 

smallest mass condition. Therefore, the necessary additional 

mass (m ) can be determined as follows: a 
ma = mo " mb = ^o71^2 - % ( 4) 

where \i    =  density ratio of initial mass-condition = m /rrpb2 

p    -  mass density of water. 

To find the required location of the e.g. of m ,the moment a 
of mass about the selected e.g. location is set equal to zero 

as follows: 

iama + V^b = 0 ( 5) 

where x Is the distance from the selected e.g. location to 

the e.g. of the mass indicated. 

Equations 4 and 5 were used to determine the amount 

of mass necessary to obtain the initial mass-eondltlon and 

the location of the e.g. of this mass. The distribution of 

m was selected to provide the required mass polar moment of a 
inertia (l,yJ. Therefore, two weights, each with mass m /2, 

were symmetrically placed on either side of the e.g. location 

(x ). The distance between the masses was adjusted until 

7 



I„ = (r'b) a a ■m (6) 

In this manner, the desired values of x , r . ov/o) , 

In addition to the Initial value of density ratio (M0)^ were 

obtained. The second set of weights were designed to provide 

the selected values of ju while maintaining a, x , r , and 

V( CD constant. 

The position of the rotational axis (ab) and the 

stiffness ratio (K,/K ) were fixed; these properties remained 

unchanged throughout the experiments. The desired x was 

obtained with the first set of weights. To keep the e.g. 

location constant, the e.g. of the second set of weights was 

put at the selected e.g. location and thus did not change 

x . Equation 3 shows that ca/cD will remain constant as m 

increases when r is constant a Therefore, the ratio I /m 

was kept constant as the weights were added. 

At each mass condition (n), the moment of Inertia 

(la) and the mass (m ) may be divided Into the sum of the 

respective values for the lowest mass condition plus the 

Increment due to each weight added (i = 1, 2, ..., n - l). 

I, a = I, 
n a 

n 

E 
1=1 

AI 'a. 
1. (7) 

m = m n   o 

n 
+ E 

1=1 
Am, 

By substituting these quantities Into the definition of the 

radius of gyration, equation 2 yields 

I a + 
n 
E AI  = (r b)2 Cm a   x a,     o 

n 

E 
1=1 

Am. ], 
i o  1=1 

and subtracting equation 6 from equation 8 leaves 

n 

E 
1=1 

AI  = ( r b) a E 
1 1=1 

Am 
1' 

which must hold for all n 

AI a, 

Therefore, 

= (r b);- Am. a.     i 

(8) 

(9) 

(10) 

8 



A cylindrical shape was chosen for the weights with 

radius R. and length I.  and with axis at the desired e.g. 
location. The mass polar moment of inertia of the ith weight 

per unit span about the rotational axis is given by 
Am, 

A\ =irRi + Ami (xab)2- (11) 

Equation 11 combined with equation 10 shows that: 

R.   - b C2(r2  - x2)3l/2. (12) 
i a        oc v     ' 

But the right-hand side Is independent of i. Therefore^ the 

subscript may be dropped from R. The length of the ith weight 

is governed by the required change in mass, as follows. 

Am 
1 =   1_ (13) 

7Tp2R
2 

where p    is the mass density of the second set of weights. 
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III.  THEORETICAL ANALYSIS 

A.  GENERAL 

In hydrofoil applications, an adequate definition 

of flutter properties can be obtained from a study of the 

stability of very small motions.  Small motions should be 

stable; otherwise, they lead to fatigue conditions if not to 

larger destructive motions.  In practice, the large motions 

usually are stable if the small motions are stable. There- 

fore, time dependence can be assumed to be proportional to 

e , where X  is a complex number; all other motions can be 

built up by superposition.  (The procedure for superposing 

the lift response for more complicated motions is given in 

Appendix A.) 

During flutter, the critical flutter-speed is 

associated with a frequency of sustained vibratory motion. 

The determination of the critical flutter-speed becomes a 

simpler problem when simple harmonic motion is assumed; it 

is easier to describe mathematically the hydrodynamic loads 

for simple harmonic motion than it is to describe these loads 

for more general motions. Therefore, to simplify the problem, 

the speed and frequency required for sustained simple harmonic 

motion should be determined, rather than the response of the 

foil systjm as a function of speed. In this investigation, 

all time dependent terms for simple harmonic motion were 

assumed proportional to eJ  (co real), rather than e 

Figure 8 shows the coordinates and nomenclature used in this 

investigation. 

B.  EQUATIONS OF MOTION 

The equations of motion for the experimental model 

were derived from Lagrange's equations.  A lumped-parameter 

11 



system, with negligible damping due to friction or structural 

deformations, was assumed representative of the model. 

Figure 9 shows the dynamic system and the following defini- 

tions were used: 

m. = mass of translating parts per unit span; 

m = mass of rotating parts per unit span; 

I = mass polar moment of Inertia of rotating parts 
c  about Its center of gravity per unit span. 

The Lagranglan for the translation and rotation displacements 

Ch(t) and a( t) ] Is 

£ = tV2 + k^ + Xabd)2 + ¥^  -  lKhh2 " lKaa2- ^ 
By substituting £ Into Lagrange's equation, the equations of 

motion for the system are 

and 

mh + m x ba + K h = Q. , (15) 
a a     h    h 

I a + m x bii + K a = Q , (l6) 
a    o, a     a   ^cr x  ' 

where the dots Indicate differentiation with respect to t and 

the following definitions have been used: 

m = ITL + m = total oscillating mass per unit span, 

I =1 + (x b)2m = mass polar moment of inertia of 
(X     C      Cl     (X rotating parts about the rotational 

axis per unit span. 

Q, and Q^,are the generalized force and moment, respectively, 

acting on the system. By considering the work done by external 

forces during a virtual displacement (6h and öa), Q and Q 

became the hydrodynamlc lift and moment per unit span at the 

rotational axis. 

The equations of motion can be put In non-dimensional 

form by dividing equation 15 by TipbU2 and equation 16 by 

7rpb2U2 and by using the following non-dimensional parameters: 

12 
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ju = m/nph2 =  density ratio, 

ß = m /m     = coupling mass ratio, a' 
a 2 

Khb
2/mU2 = dlmenslonless uncoupled natural 

frequency In translation, 

fl 2 = K b2/l U2= dlmenslonless uncoupled natural 
frequency In rotation, 

r 2 = I /mb2  = dlmenslonless radius of gyration about 
rotational axis, 

s = Ut/b     = dlmenslonless time variable, and 

h( s), a( s)    = dlmenslonless translation and rotation 
displacements 

so that 

h( s) - ih( t)  and a( s) = a( t) . (1?) 

By Introducing these quantities and by nondlmenslonallzlng, 

the equations of motion become 

li  h" +ß/ixa(x" +iÄ)h
2h = L/nphl]2 (l8) 

and 

Mr 2a" -|- ß/oc h" +^r 2Q  2a = MAP b2U2       (19) 

where the primes Indicate differentiation with respect to s. 

1.  Flutter Analysis 

The description of the mode shape associated with 

the flutter of a hydrofoil connected to a hull Involves the 

superposition of the normal vibration modes of the complete 

structure. When this precise mode shape Is used In flutter 

analyses It results In a lengthy computation because there 

are an Infinite number of normal vibration modes. 

Aeroelastlc computations have shown that flutter 

speed and frequency can be predicted accurately by the 

Raylelgh-Rltz procedure. With this procedure, the mode shape 

Is approximated by the superposition of a finite number of 

pre-asslgned or assumed modes. The choice of modes Is 

governed by the structure Involved and by the results desired, 

Reference 7 discusses the choices available and the criterion 

13 



for their use. An accurate and simple procedure Is to use 

two or three primitive mode shapes that are compatible with 

the boundary conditions. The assumed modes method of flutter 

analysis has been compared with a more exact treatment 

(reference 3). The two methods reasonably agreed In the range 

of parameters used In hydrofoil design. 

In this Investigation, the assumed modes method 

exactly described the flutter mode of vibration; the two 

degrees of freedom of translation and rotation In the plane 

of flow are the only appreciable displacements of the model. 

A linear combination of these displacements exactly des- 

cribed the flutter mode-shape. Thus, no approximation was 

used In the application of the assumed modes method. 

In this case, It was more convenient to divide the 

equation of motion by TT/ob3^2 and 7rpb4üD2 rather than use equa- 

tions l8 and 19. Introductlng the assumption of simple har- 

monic motion In the form 

h = h beJüjt and a = a eJcüt (20) 
0 0 

and using the quantities /i, x , and r , the equations of 

motion were 

Ü),        CD .   , .   , 

MC1 _  (Jl)2(_a)a]    h gJ^t + Mßx a  eJü)t =    L/vph3^  (2l) 

and 

Mßx^e^ + /ir/ Li  -   C~~)^ o./^   = M/7Tpb4Q2  (22) 

At this point, an explicit representation of the 

hydrodynamic loads was introduced. The Theodorsen results 

cited in reference 8 were used in this analysis. In the design of 

the experimental apparatus, every effort was made to model 

the assumptions involved in the theory--that is, large end- 

plates were provided with small clearances to preserve two- 

dimensional flow; the Coll supports were designed so that 

1J] 
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the desired, "rigid -body motions were achieved at every 

point along the span of the foil; no free surface, cavltatlon, 

ventilation or sldewall effects were permitted. In addition, 

the foil motions were assumed to be sinusoidal; however, the 

recorded motions were checked only visually. 

The representation of the hydrodynamlc loads was 

taken from reference 9J where the expressions for the hydro- 

dynamic lift and moment are given as 

L = Trpb^ JLhho + CLa 4 -1- a) Lh: o^ e^    (23) 

and 

M = 7rpb4ü)2    ER    -(i + a)L ] h    + CM    -(L    + M. )(i + a) ' j     n      2 ho a    '   a        h  v2 

+ Lh  (|+ a)2]ao|  eJa)t. (24) 

In these relations, ab Is the distance from mldchord to the 

rotational axis and Is positive If the rotational axis Is 

aft. The coefficients L , L . M, , and M are complex func- 

tlons of the reduced frequency (k), which Is 

k-f (25) 

A tabulation of these coefficients may be found In references 

9 and 10. 

These results were introduced into the equations of 

motion with the following notation: 

hr    hr 

V = Lhj 
L ' = L  -(i + a)^ ar    ar  2     hr 

h, ,' = h, . -(i -I- a)!, . ixj   1xj  v2   ' hj 

Mv ' = M, -{- +  a)!, hr    hr x2   ' hr 

M, ' = M, , -(^ + a)L, . 
hj    hj  V     hj 
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V =Mar-4+a)(Lar 
+ MJ + 'l+a)aLhr 

Maj' -% -(?+a'(LaJ+Mhj) ^h ^\i 

e= W -Lhj'Maj' -Lar
,Mhr'+LaJ,Mhj' 

t = Lar,' + (^^ (26) 

The subscripts r and J denote the real and Imaginary parts of 

the corresponding complex numbers. Equations 23, 2h,   and 26 

were Introduced Into equations 21 and 22 and eJ  which Is 

common to all terms was cancelled, yielding: 

Lei- A 2 ~ ^ + Lh ' +JL  ' 
<%   ^     hr  J hj      ; , .  , 

h + ußx +L  ' + JL ,' a = 0 o    ] rr a.      ar  ^ aj   o 

and 

Mßx^M^' + JI^ '  ho+ Mra^l- (^)2]+Mar' + JM  '  ao = 0. 
[ J )     ^ )   (28) 

These are the equations of motion that the unknowns h , a , n o  o 
\],   and ü) must satisfy. 

Equations 27 and 28 are complex, homogeneous, simul- 

taneous linear algebraic equations in the unknown amplitudes 

h and a , A nontrlvial solution for these unknowns exists, o     o ' 
if and only if the determinant of their coefficients vanishes. 

In this case, the determinant is complex and results in two 

simultaneous equations by setting the real and imaginary parts 

of the expanded determinant equal to zero separately. The 

solution is thus reduced to finding the eigenvalues for U 

and a) which satisfy two algebraic equations. 

However, U appears in equations 27 and 28 only 

implicitly in the argument (k) of the hydrodynamic coefficients. 

F 
i 
g 
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Because these coefficients are most easily handled In tabu- 

lar form rather than functional, the argument usually Is con- 

sidered as an Independent parametric variable. The unknown 

frequency and one other parameter are then considered the 

dependent unknowns and solutions to the expanded determinant 

are found at chosen values of k. The second unknown Is 

usually chosen so that one of the equations resulting from 

the expansion of the determinant Is linear In both dependent 

unknowns. One method of solution of the flutter determinant 

Is the density variation method. Alternate means of solution 

are described In reference 7. 

2,  Density Variation Method 

The density variation method was particularly 

appropriate here, because the density ratio was varied while 

other parameters were kept constant. Thus, the density ratio 

and the square of the unknown frequency ratio were taken as 

the dependent unknowns In solving the flutter determinant, 

which Is: 

CO 
=0 

Mß*a + V + JV ^2C1 -(^2] + Mar' +JV 
(29) 

By expanding and setting the Imaginary part of the resulting 

equation equal to zero, the following linear relation exists 

between the chosen dependent unknowns: 

1 = ![(Jl) 2M > + r 2L M(4) 2 . lcM ..+ r 2L - ßxfl; ( 30) 
jj.    d  ^(x> '     aj a, hj   CD '   d aj   a hj   a '    v-' ' 

d and f ari defined in equation 26. By setting the real part 

of the expanded determinant equal to zero, and eliminating 

l/u by introducing equation 30, 

17 



CD / tu, 0) (Jü i LU, UJ, 
(_^)4 2(Jl)a   _   H  C(Jl)2M       .   +   r   2T        , ]  +   eH2 

( a a 
co ( CD oo 

f a a 

" Ht:]V + ra2Lhr?  '  ^a^- 2HJe | 

+ ra
a - (ßxa)2 + J CMar' -h r^Lhr'  - ßx^] + eJ2 = 0. OD 

which contains only one unknown (a^/oü)2, In quadratic form. 

The expressions for H and J are defined by equation 30 so 

that 

i-H(-^ + J (32) 

At chosen values of k, equation 31 is solved for values of 

(co /co)2, which are substituted into equation 30 to determine 

M- Finally, the corresponding values of the"reduced speed 

are found from the following relationship: 

_U_ = _lZlL (33) 
bü)    (D KD:>J 

a      {_a) 

This method of flutter analysis, including appro- 

priate elastic and dynamic assumptions, is believed to be 

most useful in hydrofoil design procedures.  The results of 

this analysis applied to the experimental conditions are 

shown in Figure 10. 

The Theodorsen representation of the hydrodynamic 

forces limited this analysis strictly to simple harmonic motions 

in two degrees of freedom. If other motions are involved, 

which are either not simple harmonic or other degrees of 

freedom, this analysis is not applicable.  Subject to these 

restrictions, the curve of reduced flutter speed versus 

density ratio obtained by the density variation method defines 

the condition--that Is, speed (u) and .frequency (to)--that 

must prevail at flutter for a particular- hydrofoil section. 

At speeds above critical flutter-speed, the motion of the 
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foil will be oscillatory divergent and at lower speeds the 

motion will be convergent. The curve plotted in Figure 10 

is the boundary between unstable motion at higher speeds and 

stable motion at lower speeds. 

3.  Stability Analysis 

In the stability analysis., the time dependence of 

the motions again was assumed to be e  . Therefore, from the 

equations of motion^ a characteristic equation was derived, 

which was a polynomial in X. The characteristic values (the 

roots of the polynomial) were found and a quantitative 

measure of stability was obtained from considering the mag- 

nitude and sign of the real part's of all roots. In this 

sense, the assumed modes method of flutter analysis is not a 

stability analysis because of the simplifying assumption of 

sinusoidal motion. 

In this analysis, the equations of motion in non- 

dimensional form were used : 

/ih" + /ißx a" + ^ 2h - L/rrpbU2 =0        (l8) 

and 

Mr ^t" + /ißx.h" +  /Jr 2.Q 2a -  M/7Tpb2U2 = 0. (19) 
(X '^ tx  tx 

The hydrodynamic terms are introduced by the Duhamel superposi- 

tion integral and the Wagner function 0( s), which gives the time 

dependence of the circulatory lift response to a unit step 

change in angle of attack. The development of these expres- 

sions and the following results are described in Appendix A 

of this report and in references '(  and 10.  The Theodorsen 

representation of the lift and moment is net applicable to 

this analysis (Appendix B), 

The hydrodynamic force and moment are 

-L/TTpbU2 ="h" + a' - aa" + 2W( s) (34) 

and 

-M/Vpb2II2 = ah" +. (| + a) a' + (^ + a2) a" -2(| + a) w( s)  (35) 
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In these equations, the quantity W( s) Is defined as 

.s 

o 

r3 

W(s) = H'(o)(/)(s) +/ 0(s - a)H"(a)da, 
•/ n 

(36) 

(37) 

where 

H'(s) - h' + a + (| - a)a' 

and where H'(o) Is the value of H^s) at s = 0. Equation 37 

Is Identical to the expression for the vertical downwash 

velocity at the B/1
! chord point of the foil. 

An approximate form of the Wagner function was 

used In this analysis. The following are two approximations 

commonly used In aeronautical literature (reference 7)» 

./   \ /y -,   ,, -,rc -0.0Jl[)5s  „ TTC -0.3s 0(sj ^ 1 - ü.lo5e       - 0.3J5e 

or 

0(3) ^ 
+ 2 
+ T' 

(38) 

(39) 

The former was used because of Its adaptability to the 

Laplace transform method of solution.  Introducing these 

results Into the equations of motion, taking the Laplace 

transforms and using the initial conditions (Figure 8), 

h^O) = a'(o) = 0, h(0) = h  and a( o) = a , (40) 

results in the following pair of simultaneous, linear, 

algebraic, nonhomogeneous equations in the transforms of the 

motion h(p) and ä(p) in which p IG the complex Laplace trans- 

form variable: 

h p2(/i + l + 20) + iiüp- [+ a    paCfißxn - a -I- 2{~ -  a)0: + 
( n 1    1    ^       ^- 

p(l + 20) I = hop(/i-l-l
il-20) +ao l-l-p[^xa-a+2(|-a)0: 

(41) 

and 
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j M|8xa - a - 2(| -I- a)0 -l- ä jp2t: \iv*  + \ + a2 -2(i hP i ^xa ■" a a2)0] 

+ pd - a -2(i + a)0: + V-v^Si*    = hvl^ ~  a *2(i + a)0 3 

+ ao 1 - a+pC^-l-in- a2 

a a i   o    a 

2(i- a2)0]L U2) 

where the bar Indicates Laplace transformation. The trans- 

form of equation 38 yields 

rh(r,)   -1    Q-^5_  0-335        /^x 
0(pJ - p " p + 0.0455 ' p + 0.3        l43j 

Finally, by solving equations kl  and 42 for the transformed 

responses h(p) and ^(p), then clearing the fraction yields 

^-M ^ '^'-H (t4) 

where P, Q and R are polynomials in p.  '. and R are of order 

five and Q Is of order six, which permitV'.d the following 

inverse transformation to be used: 

6 P(PJ   Pn3 n •1 P(p)    v n 
(45) 

n-1 n 
where p are of the roots of the characteristic equation 

Q(p) = 0 (46) 

and where Q'(p ) is the derivative of Q(p) with respect to p 

evaluated at p = p . These results may be confirmed in any 

textbook on operational methods (reference ll). An iterative 

process based on Newton's method was used to find the quadratic 

factors of equation '16 and is described in reference 12. The 

Interest here lies in the complex roots of equation 46 and in 

particular the root in which the real part becomes positive 

above some critical speed. The results were obtained in the 

form of the overall damping ratio (CT/OD ), which is the ratio 

of the real part of- Xto the uncoupled rotational frequency. 

If the complex root of equation '16 is 

p = u -I- 1 v (47) 
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then the overall damping ratio Is found from the real part of 

p and the frequency ratio (Cü/CDJ from the Imaginary part as 

follows 

(48) 

The overall damping ratio as predicted by this method for the 

experimental conditions Is plotted In Figures 11 through 17 

with the corresponding experimental results and the frequencies 

are presented In Figures l8 through 25. 

C.   CRITICAL DENSITY RATIO 

An examination of the theoretical results, (parti- 

cularly those shown In Figure 10) will show that the reduced 

flutter speed becomes Infinite at some value of density ratio. 

This value can be predicted by using the following Information: 

U/bto—► oo^ when k-»0 for finite values of to/co . An exten- 

sion of the assumed modes analysis leads to an explicit equa- 

tion for U^bcD when these limits are Introduced. This result ...     r  a 
Is developed In reference 3)   where the equation Is shown to be 

a ratio of two polynomials.  Setting the denominator of this 

result equal to zero yields the relation between the para- 

meters that must be satisfied at the asymptote■where 
U-r/bcu—> oo and JU = u^,   the critical density ratio. It Is 

found that /i D decreases with cu /CD and a very simple rela- 

tlon Is found for the limiting case üI/ü) =0, 

^CR = 2(xa+
1a) + 1 ^ ^ 

where x + a is the e.g. location measured in half-chord 

lengths from midchord, positive If the e.g. is aft. This 

result is plotted in Figure 25. 

By this procedure, an asymptotic behavior is pre- 

dicted for the flutter speed as /i approaches u._D.  However, CK 
this asymtote is approached from the low JJ.  side in many eases 

so that /ipn is not always the minimum density ratio at which 

flutter is predicted. 
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IV.       DISCUSSION 

A. GENERAL 

In these experiments, flutter was Induced under 

controlled and somewhat artificial conditions to validate the 

application of airfoil theory to hydrofoil phenomena. Con- 

sequently, these theoretical studies were carried out in ac- 

cordance with aeronautical practices. 

B. EXPERIMENTAL PROCEDURE 

At each mass condition (/i , where n = 0, 1, 2,   ]\, 

7, 9,   ll) two bits of experimental information were obtained; 

the overall damping ratio (a/cu ), and the frequency ratio 

(üü/o^) . The model was locked in position and when the apparatus 

attained the desired speed, the model was released and the 

resulting motion was recorded. The speed of each successive 

test was increased until the motion of the model was diverg- 

ent, in which case the apparatus was quickly brought to rest 

to avoid destructive or violent motions. Flutter was obtained 

in each test series except series 0(/Li = 0.758) ■ 

A time signal was recorded simultaneously with the 

motions to measure frequency (CD) . Because the model had two 

degrees of freedom, two values of Cü were obtainable. The coupled 

zero-speed, rotation mode-shape led to flutter. The damping 

in the translation mode increased rapidly with speed, con- 

veniently aiding its elimination from the records. By properly 

choosing initial conditions, appreciable response in the 

translation mode was eliminated. 

The second piece of information, the overall damping 

ratio (a/cu ), was obtained using 
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0   -     .Li ^L] r iüf  1 + 1\ -i 

a       a      o-, 
(49) 

where 1 Is the number of cycles analyzed. The quantity In 

square brackets Is proportional to the slope of a straight 

line faired through the successive amplitudes of oscillation 

plotted on semi-log graph paper. 

The tests were performed In two groups (series k, 

7,   11 and series 0, 1, 2,   9,   respectively)^ separated by two 

weekSj during which time, some of the data were analyzed. 

During this time It was realized that the rotation mode of 

vibration was leading to flutter; subsequently, the model was 

held at an Initial angle of attack rather than with an Initial 

translation displacement, as In the i'lrst group of tests. 

During the second group of tests, an investigation of the 

effect of initial conditions on the experimental measurements 

showed that the results of the i'lrst group could still be 

used, because of the large amount of damping in the transla- 

tion mode of vibration; by repeated runs at a particular 

speed, the results were found to be reproducible.  (See points 

at u/bco = 1.11 in Figure 14 or at u/bcDa = 1.21 in Figure 17.) 

C.  EXPERIMENTAL RESULTS 

The maximum speed obtainable was considerably lower 

than anticipated. The apparatus was designed on the basis of 

a maximum speed of 30 feet per second.  Actually, this speed 

was 15 feet per second (u/bm = I.67, for series 0, /i = O.758, 

where the limitation was most severe and the only mass condi- 

tion in which the maximum speed was obtained). The experimental 

results i'or the present investigation are somewhat inconclu- 

sive in this regard:  it is not certain that flutter could not 

be induced at a higher speed I'or series 0 (Figure ll) .  How- 

ever1, a sharp upward turn in reduced Clutter speed does occur 

as M decreases, (Figure lo), which at least partially sub- 

stantiates the existance of an asymptote as predicted. 
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D.  THEORETICAL RESULTS 

The analysis by the two theoretical methods that 

can be used to predict speed and frequency at flutter has 

shown that (l) the assumed modes method of flutter analysis 

leads to a prediction of /iGR at which the flutter speed 

increases asymptotically and (2) the superposition method of 

stability analysis provides information for speeds other than 

the flutter speed; these results were obtained in addition to 

the prediction of critical flutter-speed and frequency. 

The flutter speeds as predicted by the assumed 

modes analysiSj which involved an exact modal description in 

this case,   are shown In Figure 10 and the corresponding fre- 

quencies for each test condition are shown in Table II. The 

critical-density ratio as predicted by this analysis at 

co /(JO = 0 is plotted in Figure 25- The difference between 

series 0^ 1, 2, 9 and series k,  'J,   11 (Figure 10) is caused 

)y the change in > 

slight shift inVr 

by the change in x between these two groups, thus causing a 

OR 

Figures 11 through 17 show the overall damping ratio 

obtained from the superposition analysis, which reduces to the 

well-known critical damping ratio for a one-degree of freedom 

system vibrating freely in air, plotted against the reduced 

speed for each mass condition. The predicted flutter speed is 

found where c/co goes to zero. A comparison of these speeds 

with the theoretical results from the assumed modes analysis 

in Figure 10 for corresponding /i's shows the anticipated 

identical agreement between the two methods. The use of the 

approximation In equation 38^ thus agrees well with more exact 

theory.  No flutter la predicted for series 0 or 1.  Figures l8 

through 2JI show the frequency ratio versus reduced speed, as 

predicted by the superposition method. 

Other results of the superposition analysis are 

tabulated In Table III /'or series 9 (M - 3.03). 



The theoretical results described here were obtained 

on an electronic digital computer. The program for both the 

assumed modes and the superposition analysis have been 

retained for future use. 
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V.  THEORY COMPARED WITH EXPERIMENT 

The results of series 'J,  9, and 11 show relatively- 

good agreement between theory and experiment for the predicted 

flutter conditions (Table II). As cited In reference 4 and 

as Indicated In Figure 10., the theory gave a conservative 

estimate of flutter speed for these conditions. No apparent 

reason could be found to doubt the results of series 7 

(/i = 2.06) in Figure 10; however, there is nothing to cause 

these results to be out of line with the other series.  A 

lower experimental value for the reduced flutter speed at 

this mass condition would be in agreement with the antici- 

pated experimental results. 

Between series 7 and 'I, the inadequacy of the theory 

to predict the flutter speed with accuracy becomes more 

apparent and the resulting error becomes more dangerous. 

Although the good agreement in frequency ratio is retained at 

the lower density ratios, the overall damping ratio is con- 

siderably overestimated.by the theory; in fact, at series 1 

the theory predicts freedom from flutter where flutter was 

obtained during the experiments.  In the case of series 0, 

flutter, though it did not occur, was imminent; the theory 

predicts no flutter at all speeds. Even in this circumstance 

the frequency ratio is well predicted (Figure 18) and is 

within 9 percent. 

The results of reference Jl, Indicated a discrepancy 

between theory and experiment for the prediction of flutter 

speed at low density ratios.  However, they were not able to 

extend their investigations to a sufficiently low value of 

density ratio to check the existence of an asymptote as pre- 

dicted by equation JI9-  These results are summarized in 

Figure 1.  At high values of density ratio (ju - 3.0) the 
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theoretical and experimental results were essentially In 

agreement, or the theory was conservative. 

The present results shown In Figure 10 substantiate 

the results of reference ^1. In addition, the experimental 

results at series 0(M = 0.750) strongly indicate the exist- 

ence of an asymptote In flutter speed. There is definitely a 

sharp upward trend shown as JU decreases. The position of 

this asymptote Is not correctly predicted by theory. The 

theoretical and experimental value of M „ are plotted in 

Figure 25- The comparison Is somewhat worse than is shown 

there since the theoretical curve is derived for the case 

cu/o) = 0 and in reference '->,   It is shown that /i  Increases 

with en/a) . 

Some more definite information about the discrepancy 

can be gotten from the results of the stability analysis. 

The experimental and theoretical overall damping ratios are 

compared in Figures 11 through 17. There, it Is seen that 

a/cD Is overestimated by the theory up to series 7 (/i = 2.08) 

and from that point on the predicted overall damping ratio is 

less than that obtained in the experiments. The frequency 

ratio is very well predicted throughout as shown in Figures l8 

through 24. We have found that the frequency ratio depends 

mainly on terms proportional co h(t) and a(t) or their second 

derivatives; however, the damping ratio depends mostly on 

terms proportional to the first derivatives. The latter 

contain the circulatory responses--that is, the Theodorsen 

or Wagner functions; the former are not as sensitive to these 

functions. Since the frequency ratio is fairly well predicted 

and the damping is not, it may be surmised that the effective 

mass and Inertia terms in the theory are more accurate than 

the circulatory terms.  Other Investigators have used this 

hypothesis as mentioned in reference 3. 
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VI.   CONCLUSIONS 

1. A conservative prediction of flutter speed may be 
expected at high-density ratios. 

2. The theory does not correctly predict the flutter 
speed near Mpp. 

3. The theory does not correctly predict the location 
ofMCR. 

4. The frequency Is very well predicted at flutter and 
at lower speeds at all density ratios. 

5. The overall damping ratio does not agree with 
experimental results. 

6. The circulatory terms In the theory are more liable 
to doubt than the effective mass or spring terms. 
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VII.   RECOMMENDATIONS 

Further Investigations are In order to describe 

more fully the discrepancy that has been shown to exist. 

Several different values of e.g. location and radius of 

gyration should be used In further Investigations. In addi- 

tion to the results presented here, an experimental determi- 

nation of amplitude ratio and phase angle should be attempted, 

Single degree of freedom studies In water should be carried 

out, to provide separate comparisons between theory and exper- 

iment for each component of the lift and moment expressions. 

Also, zero-speed responses must be analyzed to check the pre- 

diction of added mass, added inertia, and added mass coupling 

terms. 
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TABLE I 

PROPERTIES OF MODEL TENITE II, FORMULA 233, FLOW MS 

Flow Temperature 2840F 

Specific Gravity 1.22 

Modulus of Elasticity 1.30 x 105psl 

Deformation under Load (Cold Flow) 33% 
Water Absorption {2[\ Mrs.   Immersion) 

Total Weight Gained 
Soluble Matter Lost 

1.3% 
0.1% 

Accelerated Aging Weight Lost 
(72 hrs at l8o0F) 1.6% 

TABLE II 

PARAMETERS AND FLUTTER CONDITIONS 

Series 
No. 

.758 

X 
a 

.496 

2 
r 

a 

u,   2 

(^) 
0) 

a 

U 
F 

exp. 

/by 
a 

the. exp. the. 

m x  10 
2 

lb sec 

in2 

a 
rad 
sec 

0 .900 .251 2.00 36.0 

1 .883 .496 .895 .264 1.22 -- ,960 -- 2.33 32.3 

2 1.008 .496 ,891 .260 1.14 1.84 . 970 1.000 2.66 30.2 

4 1.285 .465 .862 .269 1,08 1 .42 ,980 .Q77 3.39 26.8 

7 2.06 .465 .839 .277 1 ,53 1 .29 ,O|0 1.002 5.43 21.3 

9 3.03 .496 .868 .258 1.44 1.32 , 080 1 .040 8.00 17.5 

11 4,07 .465 .895 .268 1.55 1 .45 .(:'85 1.020 10.74 15.0 

b = 3  inches a   = -0.5 
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i REGION   I    a) NO FLUTTER 

b) NO FLUTTER THEORETICALLY,  NO EXPERIMENTAL INFORMATION 

REGION 2    FLUTTER FOUND EXPERIMENTALLY. BUT NONE PREDICTED 

REGION 3    THEORY PREDICTS FLUTTER AT HIGHER SPEED THAN THAT FOUND IN EXPERIMENTS 

REGION 4    THEORY GIVES CONSERVATIVE PREDICTION OF FLUTTER SPEED 
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FIGURE   3.    APPARATUS, STARBOARD  SIDE 

FIGURE   4.   APPARATUS, PORT   SIDE 
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FIGURE 5.   BALANCE, STARBOARD   SIDE 

FIGURE 6.   BALANCE, PORT SIDE 
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APPENDIX A:  STABILITY ANALYSIS BY SUPERPOSITION 

I.  INTRODUCTION 

To predict the stability of small elastic-deforma- 

tions of a hydrofoil section, three types of forces must be 

related to the motions of the foil: Inertlal reactions, 

elastic restraints, and hydrodynamic loads. The inertlal 

forces can be described by either Lagrange's or Newton's 

equations; to describe the elastic forces, strain-displacement 

and stress-strain relationships must be established.  (Hooke's 

law can be used to relate the stresses to the strains.) 

Hydrodynamic loads due to sinusoidal motions have been de- 

scribed mathematically by Theodorsen (reference 8). 

A.  HYDRODYNAMIC LOADS DUE TO SINUSOIDAL MOTIONS 

The sinusoidal motions are expressed as 

h(s) = h eJks 
'   o 

a(s) = aoe
Jks . (A-l) 

where, h and a are small dlmenslonless amplitudes of heave 

and pitch, and may be complex; k is reduced frequency; and s 

is dlmenslonless time. The two-dimensional lift (b) and 

moment (M) per unit span for a sinusoidal motion are expressed 

as 

L/rrpbU2 = - Ch" + a' - aa" ] - 2C(k)i:h' + a + (i - a)^: 

M/7Tpb2U2 = Cah" - (| + a)a' - (i + a2)a"] + 2(| + a)c(k) 

Ch' + a + (i - a)a' ] (A-2) 

A-l 
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27T 
(A-5) 

Let S = TU/b be the dlmenalonless period of the motion. Thus, 

the Fourier coefficients are 

h = o  S [ 
/.S 

h = ^ n  o 

h(s) dSj 

-Jk s 
h(s)e  n ds, 

ao 
1 
S 

• 

j     a(s)da, 

'o 

a n 
2 

" S 
'3               -Jkn3 

a( s) e      n ds. (A-6) 

o 0 

To find the lift response to this motion, the response for a 

single Fourier component must be obtained, which Is expressed 

as 

Jk s ( 
L /rrpbU2 = -e    n   < -k 2h    + [Jk    + ak2 ] a    + 2C(k )Cjk h    + n/r inn        ^n nn n'   ^nn 

{l+(i-  a)jkn}an]j (A-T) 

and the moment response Is expressed as 

Jk s 
M ApbU2 = -e 

s ( 
n {ak 2h +C(i+a)jk -(i+a2)k2]a - j n n    2   'J n   Q '   n        n 

2(i + a)c(k )Cjk h + |l + (i - a)jk la 1)      (A-8) \ 2   ' v n7 ü n n  (   '2   ' ^ nj n j     ' 

The lift and moment response to h are zero: however, there 
o 

Is a steady response to the mean angle of attack (a ): 

L ApbU2 = -2a    = L  ' <y   r oo 

M./7rpb2U2 = +2(| + a)a 
o        o (A-9) 

The sum of the responses to the components of the 

motion (equation A-^)   results In the total lift and moment: 

A-3 
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and moment acting on the foil. Thus, the case of a foil 

operating In oblique seas may be analyzed. These results 

were derived assuming a rigid chord-section. Elastic defor- 

mations In camber could be Included using the results of 

Spielberg*. The affects of aspect ratios as low as 2 can be 

Included by using the table of aerodynamic coefficients by 

Relssner and Stevens**. 

D.   ARBITRARY MOTIONS 

The Theodorsen results can be extended to arbitrary 

motions***. For this motion, the nonclrculatory terms In 

equation A-10 are not changed and only terms containing C(k ) 

are considered.  Also, the circulatory lift and moment terms 

depend on the motion In exactly the same way--that Is, through 

the vertical velocity of the 3A-chord point, which Is 

H'(s) = h'U) -l- a(s) + (~ - a)a'(s).      (A-l4) 

Using this observation, the circulatory lift response to a 

single Fourier component of reduced frequency k Is, for a 

unit amplitude of H^s), 

AL /7rpU2b = - 2C(k)eJks (A-I5) 

The Fourier'Integral representation of an arbitrary motion 

H'fs) becomes 

*Splelberg, Irvln, N., "The Two-Dlmenslonal Incompressible 
Aerodynamic Coefficients for Oscillatory Changes in Airfoil 
Camber," Wright Air Development Center, Technical Note 
WCNS 52-7, l8 August 1952. 

**Reissner; Eric and Stevens, John E., "Effect of Finite Span, 
on the Airload Distributions for Oscillating Wings. 
II-Methods of Calculations and Examples of Application", 
NACA TN 1195, 19JI7. 

***Wagner, H., "Über die Entstehung des Dynamischen Auftriebes 
von Tragflügeln," Z. Ange, W. Math. Mech., Bd.5, Heft 1, 
February, 1925» 
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Consider, a step change In H^s): 

i ( 0 , f or s < 0; 
H'(s) ={ , (A-21) 

(h'Co) + a(0) + {- -  a)a,(0), for s > 0 

i 
The Fourier Integral for such a motion Is 

Comparing equation A-22 and equation A-l6 shows that 

I r|(k) = Ch'(0) + a(0) + (| - a)a'(0) ] i ,   (A-23) 

for this motion. The circulatory lift response to this step 

change Is found by substituting equation A-23 Into equa- 
tion A-18: I 

I Lc/pU
2b = - Ch'(0) +a(o) + (| - a)a'(0)]/  ^ eJkS 

I 
I 
I 

which when substituted into' equation A-2J4 yields 

i 

! 

dk 

(A-24) 

The Wagner function t${s) ] is defined as the time dependence 
of the circulator lift response to a unit step change in H^s) 

at s = 0 or 

«00 

M   '^j ^eJksdk (A-25) 

L /TrpUab = - a:h'(o) + o(0) + (i - a)a'(0) j^(s)    (A-26) 

Dividing the Theodorsen function into its real and Imaginary 

parts CF(k) and G-( k) ], respectively, results in two simpler 

relations for the Wagner function: 
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I 
f 
I 
I 
i 
I 
I 
I 
I 

M = 7Tpb2U2 Cah" H- (~ + a) a' + (i + a2) a" 1 + 
c- o 

27rpb2U2  (|+ a)  |H'(0)^(S)  +/    iZf(s - 7)  ^H'^chJ      (A-31) 

where 

0U) =1 f F(k) 
k 

sin ks dk , {A-32) 

H'(s) 

0 , ' s < Oj 

h^O) + Ua(0) + b (| - a)a,(0) = H'(o), s = 0; 

h'ia)  +  Ua(s) + b (| - a)a,(s) . s > 0.(A-33) 

II.   ANALYSIS OF SYSTEMS WITH TWO DEGREES-OF-FREEDOM 

The lift and moment equations were used In the 

stability analysis to determine the overall damping and fre- 

quency ratio associated with the experimental conditions. To 

do this, equations A-30 through A-33 are substituted Into the 

equations of motion., equations 18 and 19. The equations can 

be written as 

(/i+ l)h" +  Mfih
2h + (/ißx    -  a) a" + a'  + 2 CH,(0)^(s)   + 'h a 

/    j2f(s  -  7)H"(7)d7: = 0 (A-34) 

and 

{lißxn -  a)h" + (/ir2 + ^ + a2) a" + (^ -  a)a, + Mr! ^ + a a    a 

2 [H'(0)j2f(s)   +/     ^(s  - 7)H"(7)d7^ = 0.   (A-35) 
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Qh = Mrr.20,2 
a    a {\-  a2)/^ h 

«^-(l+a)^ (A-36 cont'd) 

P    = h Q0 0 a 

Pb = hoQb 

Pc =ho(M + D^r/V +ao(^xa 
2n   2 a)^„"a 

Pd = 
2n   2 

0^ a    a 

P^  = 0 

P. = Vf 
P    = h 

g o 
El  -  (M + l)(i+ a)   -  (Mßxa  -  a)] - cxo[(i+ a)(Mßxa-a) + 

M^ + i+a2: 

Ph -^-a^a2 + ao^l "  ^^a^a2"  1] 

P.   = 0 ( A-37) 

R    = 
a 

R    = 

a  Q 
o^a 

ao% 

a (Mr 2+i+ a2)/^,2 + ho(/i xa ovr^        8 
a)^h

2 

Ra = aoQd 

R„   =  0 

I 

I 

R. = T 

R 
I 

R. 

aoQf 

a 
g        0 

Cho + (i a)ao] Q1 

= 0 (A-38) 
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The polynomials in equation 44 are now defined so that the 

inverse Laplace transform is introduced to determine Ms) 

and a(s). Referring to any text on Laplace transformation 

the following theorem applies*.If Q(p) is a polynomial of 

degree i, with i distinct zeros p = p^, p2J..., p., and P(p) 

is a polynomial of degree i - 1 or less, then 

PT 
OTP) La  0.' 

n=l Q'(Pn)  (P " Pn) 
(A-43) 

To each term of equation A-43 the following inverse transform 

applies 

1 
P 

= e 
p t 
n (A-44) 

n 

Summing this result for each of the six zeros of Q(p) yields 

£-imu E p(Pn) Pns 
(A-45) 

lip)) " ntl Ö7!^ 
The six roots of the denominator CQ(p) ] must be 

determined. A process based on Newton's iterative method was 

used. In this process, the quadratic factors of equation 45 

are determined first, then the pairs of roots for each quad- 

ratic factor are found. The polynomial to be factored is of 

sixth order so that three quadratic factors and six roots 

must be determined. 

Each root is complex: 

P n u + jv n  J n 

n = 1, ..., 6 (A-46) 

*Hildebrand, F. B., ADVANCED CALCULUS FOR ENGINEERS, Prentice- 
Hall, Inc., New York, 1954. 

**Descrlbed in Scarborough, J. B., NUMERICAL MATHEMATICAL 
ANALYSIS, The Johns Hopkins Press, Baltimore, 1950. 
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APPENDIX B:  GENERALIZATION OF THEODORSEN'S FUNCTION 
FOR CONVERGENT (STABLE) OSCILLATIONS 

by Paul Rltger 

The Theodorsen function (reference B-l)was developed 

for the case of a real argument. When this function was 

extended to Include complex arguments, two different and 

Incompatible conclusions were made, (references B-2 and B-3) 

To resolve this discrepancy, the following rigorous analysis 

was developed. 

Theodorsen (reference B-l) showed that the clrcula- 

tlonal part of lift forces caused by translatlonal motions 

with unit-magnitude velocities—that is, h(s) = e^ --is 

L(s) = 2pmJbC(/;)h,(s) (B-l) 

where the Theodorsen function C(C) is 

-  e"^ dx 
. -, -Jx2 - 1 

C( 0 = 1  ^ =:  (B-2) 

IJ ^Li-l e-^dx x i 

The function C( C) is properly defined by equation B-2, if and 

only if the complex number C is restricted so that 

ImU) < 0 (B-3) 

This inequality is satisfied in the case of divergent oscil- 

lations.  If Im( 0 = 0, the Integrands in equation B-2 behave 

like sin ^x at «j hence, the integrals would be oscillatory 

divergent. If Im( 0 > 0, which is true for convergent oscil- 

lations, then both Integrals in equation B-2 become Infinite. 

Hence, the Theodorsen function, as defined by equation B-2, 

is meaningless for Im(C) > 0. 

B-l 



points then It Is essential to specify which branch of the 

function Is to be used. In the present case,the physically cor- 

rect branch Is partly determined by equation B-2. That Is, 

we must be sure to choose a branch of C1(C) that coincides 

with C(0 for lm(0 < 0, I.e., - TT < arg C < 0. If the 

so-called "principal branch" of K (jC) Is chosen, this con- 

dition Is satisfied and, hence, this seems to be the most 

natural choice. Luke and Dengler have used another branch as 

will be shown below. 

The "principal branch" of K (JC) Is usually defined 

(see Watson, reference B-5, p. 77) in terms of the function 

I . That Is, In general, we have the following definition of 

the many-valued function K (z) 

K (z) n ' 
7T 

I 
11m ■ 
v—*-n 

■v U) I>) 
sin vn (z/0).   (B-6) 

rms Now, I (z) is in turn defined in te 

principal branch of I (z) is given by 

of J (z) and the 

Vz) = 
), 

-TT < arg z < ix/2, 

■n/2  < arg z < TT. (B-7) 

I 

In equation B-7^ to be precise, the principal branch of J is 

to be taken, which is the reason for a split definition 

of 1 iz) .    If z in equation B-7, lies in the second quadrant, 

i.e., 7r/2 < arg z < TT, then ze J/t (i.e. jz) would be such 

that TT < arg [ze ^  )  < 3^/2 but this would then give a value 

of J which is not on the principal branch. The principal 

branch of J (0 (see Watson p. Vl) is obtained by restricting 

arg £ to -TT < arg C,    < TT. 

To carry this all the way, J is defined by 

I 
JV( 0 = (cv) i; aK( e) 

K-o 

I B-3 



i. 
This definition of K (z) Is often written 

n 

i K(z) ^Je'^H^Üz) 

I 
i 

i 

i 

i 

I 

i 

i 

i 

i 

i 

i 

I 
I 

n.~,   -  2 ^     ..n  w~, (B-12) 

which Is correct for the multi-valued function K (z), but if 

one wishes to restrict oneself to the principal branch, then 

equation B-ll must be used. 

The results of Luke and Dengler are obtained by 

using equation B-12 Instead of equation B-ll and hence must 

be Interpreted with this fact In mind. In particular, they 

are concerned with the values of C(C) In the vicinity of 

arg C = 0, Hence, by equation B-5 they use K (jO near 

where arg C = 0, i.e. where arg K = 7\/2.     So,   if arg C, 

is slightly greater than zero, they are using values which 

are no longer on the principal branch. The many valued 

function K (jC) is continuous for arg ^ = 0, but the single- 

valued principal branch is not. Jones used the principal 

branch and hence his values show this discontinuity along 

arg £ =0. Incidentally, he uses rectangular coordinates 

which hide the significance of the restriction on arg £ . 

Since aerodynamlclsts seem to be most interested in 

the region around arg £ = 0, there Is something to be said 

for the Luke and Dengler approach. That is, their extension 

of the definition of C(k) is the only one which agrees with 

equation B-l for Im(k)< 0 and at the same time is the analytic 

continuation of equation B-l across the half-line arg k = 0. 

It should be emphasized, however, that this approach still 

leaves one with a discontinuity along the negative real axis, 

i.e. for arg £ = ± TT (if one desires a single-valued func- 

tion) .  Since Luke and Dengler do not discuss the branches of 

functions involved, there is some ambiguity in their defini- 

tions. 

Moreover, the physical meaning of equation B-5 for 

Im (() > 0 is not at all clear. 
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I 

I 

I 

Hence, the clrculatlonal part of the lift force caused by a 
unit step change In translatlonal velocity Is given In 

general by 

/a 
jrf(x) ej;:(s " x) äxl  (B-16) 

u 

This result agrees with Blspllnghoff, etc. (reference B-7) 

for a lift force. 
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